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Note 

Numerical Solution of Orr-Sommetfeld-Type Equations 

1. INTRODUCTION 

Equations of Orr-Sommerfeld type, homogeneous boundary value problems in 
which the differential equations have solutions with widely differing growth rates, are 
notoriously hard to solve numerically (for a general introduction to the earlier 
literature see the review by Gersting and Jankowski [4]). The methods used fall into 
two categories: first, those which seek to determine the entire solution at once, either 
by using matrix methods to solve a finite difference scheme or by determining the 
coefficients in some expansion of the solution; second, the shooting methods which 
attempt to solve the boundary value problem by initial value methods. In this note I 
only consider methods in the second category. 

2. THE PROBLEM 

Consider a system of linear ordinary differential equations depending analytically 
on some complex parameter p, 

Y: [x,, -qJ + v, (1) 
p: [X,,Xb] xc+qv, V), 

where V is a complex vector space of dimension n and [x,, x,,] is a closed interval of 
the real line. Suppose it subject to k independent linear homogeneous boundary con- 
ditions at x, and to k’ = n - k at xh, that is, there exist linearly independent subsets 

{ai}i,l. .k @i}i=l k’ (2) 

of the dual space V’ and the boundary conditions are 

ai(Y(x,)) = Pj(.Hxb)) = 0 i=l ,..., k,j= l,..., k’. (3) 
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It is convenient to introduce bases for the annihilators of the subspaces spanned by 
these sets, i.e., linearly independent sets of vectors in V 

such that 

aj(Ui) = pi(bj) = 0 i = l,..., k’, j = I)...) k. (5) 

Then any solution of the system satisfying both sets of boundary conditions will have 
for its value at X, a linear combination of the a, and at xb a linear combination of the 
bi. The problem is to find the values of p for which such solutions exist (the eigen- 
values of the system). 

3. SIMPLE SH~~TING 

Integration of (1) defines a flow on I’, i.e., a map 

R(X,) x2): v+ v (6) 

such that 

R(x, 7 4 Y(Xl) = u(xz> (7) 

because the system is linear this map R is linear: if the value of the solution at x, is a 
linear combination of the ai, then at xb it will be the same linear combination of the 
vectors 

{R(xa,x,kiIi=, k’ (8) 

and this will be expressible as a linear combination of the bi iff the exterior product 
(or determinant) 

A = R(xa,x&zl V ... V R(x,,xJakc V b, V “. V b, (9) 

is zero. The simple shooting method consists of choosing k’ sets of initial values 
satisfying the boundary conditions at x, (the ui), advancing them to xb by some 
initial value method, and evaluating A. If the differential system is nonsingular in the 
range [x,, xb], A is a holomorphic function of the parameter p and its zeros may be 
found by any of the standard methods. 

This simple scheme breaks down when applied to problems of the Orr-Sommerfeld 
type. Although the initial vectors ai are linearly independent, the final vectors may 
well be nearly dependent because the growth of some components of the solution is 
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so extreme as to swamp the less rapidly growing. A partial cure is to match at some 
point x, in the middle of the range and set 

A = R(x,, x,)a, A ‘.’ A R(x,, x,)akc A R(x,, x,)b, A ... A R(x,, x,)b,. (10) 

4. THE METHOD OF ORTHONORMALIZATION 

A much better solution is the method of orthonormalisation (see, e.g., Conte [ 11). 
In this the range of integration is divided into a number of subranges. As in the sim- 
ple shooting method, a set of k’ vectors is advanced from x, to xb by integration 
across each subrange. However, at the end of each subrange the k’ vectors are 
orthonormalized (say by the Gram-Schmidt process) with respect to some arbitrary 
inner product on V. For a suitable division into subrange this ensures that the vectors 
remain independent and that the growth of one solution does not swamp the others 
(or cause overtlow problems!). As before, a determinant d can be formed, either at xb 
or at some internal matching point x,, the zeros of which identify nontrivial solu- 
tions of the boundary value problem. It may not, however, be a holomorphic function 
of the parameter; in particular, if the quadratic form used to define the inner product 
is a positive definite Hermitian one, it will not be holomorphic because of the oc- 
currence of complex conjugate quantities in the expression for the inner product. For 
this reason the use of an orthogonal form (even though it is indefinite) has been 
recommended by some authors (starting with Gary and Helgason [5]). It is certainly 
true that the determinant found in this way will be locally holomorphic, but because 
of the different branches of the square root which may be taken when normalizing, 
the region of holomorphy will tend to be very small. Thus, it is impossible to use 
global zero finding methods based on the principle of the argument. 

By contrast, if the inner product is based on a Hermitian form, not only do we 
have the security of a positive definite inner product, but if the Gram-Schmidt 
process has been used the determinant formed is the product of a positive real func- 
tion and that which would be obtained if the simple shooting method were used with 
exact arithmetic (the orthogonalisation of the vectors does not change A and the nor- 
malisation of each divides A by the modulus of the vector). Because of this we can 
use the principle of the argument to locate the zeros of A even though it is not a 
holomorphic function of p. 

5. INVARIANT IMREDDING 

The method of orthonormalisation indicates that the particular set of vectors being 
advanced is less important than the linear subspace they span; this suggests for- 
mulating the problem and its solution directly in terms of subspaces of K 

The differential system induces a flow not only on V but also on most of the 
associated geometric objects; in particular, it induces a flow on the Grassmanians 
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.K( V) (defined as the set of k-dimensional linear subspaces of V; for example, .Y2(R “) 
is the set of all planes through the origin of R3). The boundary conditions can be 
stated as 

y(x,) E & = Span(a,) E .?$( V), 

Y(xJ E 28 = Span(b,) E $,(V), 
(11) 

so that if the induced flow on LYk( V) is denoted R,, the condition for a nontrivial 
solution is 

R&,, x&(d) n 9 f 0 (12) 

or if matching at some intermediate point, 

R&o, x,W’> n U-G> x,&V # 0. (13) 

.yk( V) is a manifold and has certain natural parametrizations. Let UE <Yk( V) and let 
U be a complementary subspace, 

v= ug u, 

dim(U) = k, dim(q = k’. 
(14) 

Let a E .P(U, q and consider the map, 

a t+ graph(a) = (U @ au: u E U} c V. (15) 

This is a parametrization of an open neighbourhood of U in &(V) by elements of 
P(U, 0) which can be identified (though noncanonically) with Ckk’; the set of such 
parametrizations (or rather their inverse charts) constitutes an atlas for the manifold 
>Fk( V). 

Having parametrized gk(V) ( or at least an open subset of it) the flow R, defines 
and is defined by a system of differential equation in the parametrization coordinates. 
The splitting of V induces a splitting of F into four linear maps A, B, C, D. 

F(u @ ii) = (Au + Bfi) @ (cu + DU) 

VUE u, VziE 0. 
(16) 

If 

then 

~=U@ClU. 

u’ @ (a’u + au’) = (Au + Bau) 0 (Cu + Dau), 

+u’=Au+Bau, 

a’u = Cu + Dau - aAu - aBau. 

(17) 

(18) 
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If the second equation is to hold for all initial values of U, 

a’=C+Da-aA-aBa, (19) 

which is the required equation determining the flow R,. When V is of even dimension 
and k = n/2, this is the central equation of those methods generally known as Riccati 
or invariant imbedding methods (see, e.g., Scott [6]). An advantage of this derivation 
is that the extension to cases of arbitrary dimensionality (as recently achieved by 
several authors [3, 71) is obvious, but equally as important is the conceptual gain 
from having a clear geometric formulation of the method. For instance, it is well 
known that singularities may be encountered in the integration of the Riccati 
equation and that the solution is to change to another set of variables which satisfy a 
related Riccati equation. From the geometric point of view it is clear that this 
behaviour is an essential consequence of the fact that the manifold .?$(I’) is not 
homeomorphic to an open subset of Ckk’ and so cannot be covered by any one 
parametrization; whenever in the integration we move out of the region covered by 
our chart we must switch to another. This raises the interesting question of how many 
charts are needed to form a complete atlas. If it is confined to natural charts (as 
defined above and used in the standard methods) it is easy to see that at least k + 1 
are required (in contradiction to the impression often given that two will sufftce). For 
given any k natural charts on Yk(v) defined by the decompositions of V, 

(20) 

choose one vector from each of the complementary subspaces 0, .. ‘. 0, and if 
necessary adjoin to this set such additional arbitrary vectors that the subspace of V it 
generates is of dimension k. Then this subspace is an element of &(V) that does not 
belong to any of the coordinate domains of the given charts. 

6. OTHER METHODS 

This geometric point of view can be used to describe other integration techniques 
and suggests several new ones. By integrating in the dual space V’ we get the method 
of adjoints, the simple shooting method and the method of orthonormalisation can be 
regarded as an integration in Ok V, and the method proposed by Davey [ 21 in a 
recent paper involves integrating in A” V. A novel method which is not very efficient. 
but easy to program, consists of integrating in the space of sets of k orthogonal 
vectors 

This is obtained from the simple shooting method by a slight modification of the 
derivative subroutine; instead of integrating 

Y&=FY,, a = l,..., k’, C-21) 
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we take an initial set of orthonormal vectors and integrate 

v&== ir (1 -.Y&J$3P9% a = l,..., k’; 
B=l 

(22) 

in other words we only keep that component of each derivative which is perpen- 
dicular to the subspace spanned by the vectors. This means that the vectors remain 
orthonormal and only rotate as much as is necessary for them to stay in the correct 
subspace. 

7. COMPARISON OF METHODS 

The invariant imbedding method and that of orthonormalisation require the 
integration of differential systems of order kk’ and max[nk, nk’ 1, respectively; 
however, the invariant imbedding method needs a steplength about half that used in 
the other (unless a stiff equation integrator is used) so that the computational 
overheads are comparable. The chief difference between them is that while both 
determine the subspace Rk,(x,, x,)(a), the method of orthonormalisation also 
determines a specific basis for it. This additional information allows one to use the 
principle of the argument (the argument of d is essentially the orientation of the 
basis) in a robust and efficient scheme for determining the number and approximate 
location of the eigenvalues. I have written a FORTRAN package which, given a 
rectangular region in the complex p plane, scans the boundary recording where 
(normalising the argument to (+x, --7~1) arg(d(p)) jumps between +n and -7~ and the 
direction of the jump. From this information the number of eigenvalues within the 
rectangle is calculated and if it is nonzero the rectangle is bisected, the new is line 
scanned, and the process is repeated as many times as desired. Once approximate 
locations have been found for the eigenvalues they can be refined by faster iterative 
processes; although it would be possible to devise a process for finding zeros of 
products of a holomorphic function and a positive real function or to restore the 
analyticity of A by retaining the scale factors used at each orthonormalisation, I have 
found the ordinary secant method quite satisfactory even though A is not strictly 
analytic. 

Location of the eigenvalues by the invariant imbedding method is equivalent to 
finding the zeros of a meromorphic function with equal densities of poles and zeros. 
While this may facilitate the precise determination of individual eigenvalues it makes 
any global search very difftcult. However, the subspace must vary less rapidly than 
the vectors so that for a given amount of computing the method may be more 
accurate (if there is a large difference between the rates of variation the Riccati 
equations will be stiff and substantial computational savings might be made by using 
a stiff equation integrator). The method I have proposed, advancing an orthonormal 
frame, combines some of the features of both methods; while allowing the use of the 
principle of the argument it should be as stiff as the Riccati method. 
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